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This paper contributes to stability analysis of current-carrying plasmas, i.e. plasma systems 

which are forced by external mechanisms to carry a nonrelaxable current. Under restriction on 

translational invariant configurations, the thermodynamic stability criterion for a multicom- 

ponent plasma ‘8’ is rederived within the framework of nonideal magnetohydrodynamics. The 

considered dynamics neglects scalar resistivity, but allows for other types of dissipational effects 

both in Ohm’s law and the equation of motion. In the second section of the paper the thermo- 

dynamic stability criterion is compared to the ideal MHD based energy principle of Bernstein 

et aL3 By the help of Schwarz’s inequality it is shown that the former criterion is always more 

“pessimistic” than the latter, i.e. that thermodynamic stability implies stability according to 

Bernsteins principle, but not vice versa. This result confirms the physically plausible idea that 

dissipational effects tend to weaken the stability properties of current-carrying plasma equi- 

libria by breaking the constraints of ideal MHD and allowing for possibly destabilizing effects 

like magnetic field line reconfiguration. 
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I. Introduction 

iXot only in the laboratory, but also in space science and in astrophysics, one decals with 

plasma systems which xe forced by external mechanisms t,o carry an electrical current and 

which are therefore prevented from relaxing into total thermodyna.mic equilibrium. A char- 

acteristic property of such systems is their tendency towxd activity, i.e.: to show an abrupt 

transition from a quiet state to dynamical behavior. The stability analysis of such systems 

is therefore particularly interesting; it is considerably facilitated if a stability criterion can be 

formulated in terms of an appropriate variational principle. 

The most fa,miliar example of such a criterion is probably the energy principle given by 

Bernstein et aL3. which has found a wide variety of applications to plasma systems both in the 

laboratory and in space science. ‘J$ However, as the underlying ideal magnetohydrodynamic 

theory (idea,1 MHD) does not include nonideal effects like particle collisions, charge carrier 

inertia or stochastic field fluctuations, Bernstein’s principle is subject to the “frozen-in field 

line” constraint and therefore insensitive to possibly instable modes involving magnetic field 

line reconnection. 

For this reason, many attempts have been made to formulate alternative a.pproaches to the 

stability problem. Although so far no ansatz is known which takes into account all of the quoted 

nonideal phenomena at the same time, considerable progress has been made by considering 

the influence of the different effects individually. For instance, the role of charge carrier inertia 

has been studied within the framework of the collisionless Vlasov theory.‘,’ To treat the effects 

of st,ochastic field fluctuations (with a spectrum predominantly perpendicular to the current), 

Kiessling et al.’ proposed an approach utilizing the principles of statistical mechanics. Recently, 

the same situation has a.lso been studied within the framework of non1inea.r thermodynamics.’ 

Having different approaches to the stability problem available; it is clearly necessary to gain a 

deeper unclersta.nding of their mutua.l connection. Of particular interest are relations that prove 

an ordering among the criteria, i.e. show that stability according to one criterion also implies 

stability to (one or more) other criteria. Such a relation has already been established between 

the statistical mechanics approach and the Vlasov criterion; ’ it turned out that stability with 

respect to the former also implies stability according to the latter (but not vice versa). 

The subject of this paper is to discuss the relations between the statistical mechanics (resp. 

thermodynamics) approach and the energy principle by Bernstein et al. However, this compar- 

ison is not directly straight forward as Bernstein’s principle is formulated within the theory of 

magnetohydrodynamics, i.e. in a one-fluid approximation involving the assumption of quas- 

neutrality whereas the statistical mechanics criterion wa.s already obtained for a multi-species 

plasma description using the exact form of Poisson’s law. 
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For t,his reason, the following analysis is divided into two main sections. In the first one (sec- 

tion II), we present a.n alternative derivation of the thermodynanic stability criterion within 

the fra~mework of (nonideal) ma,gIletohydrodyna,mics, incorporating the above-mentioned as- 

sumption on the spectrum of the field fluctuations (being perpendicular to the current) by 

neglecting the resistivity in Ohm’s law. Under the restriction of translat,ionally invariant (i.e. 

z-independent) motion, we discuss the accessible equilibria of this model and formulate the 

linear form of the corresponding st,ability criterion in terms of a variational principle for the 

z-component of the vector potential perturbation 6A. Then we turn to compare this criterion 

with Bernstein’s energy principle (section III). By specializing the latter likewise on transla- 

tionally invarknt configmxtions we can express it in a form comparable to the thermodynamic 

criterion, i.e. also a,s n variational principle in 6.4,. Subsequently, we can apply Schwarz’s 

inequality to achieve the desired definite relation between both criteria. In section IV we 

summa,rize our results and discuss their physical significance. 
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II. The MHD-Version of the Thermodynamic Stability Criterion 

Magnetohydrodynanic theory can be viewed at as the effktive description of a highly ionized 

plasma in the limit of low freqllency w nnd small wave numbers &, obta.incd by integra,ting out 

the phenomena on smaller scales. ‘These microphysical processes, however, give rise to the so 

called non-ideal effects in the dynamics, i.e. to phenomena like resistivity, viscosity or diffusion. 

As we have mentioned in the introduction, there a,re several such processes which, in a first 

approximation, may be considered independently. In this work we will discuss the influence 

of anomalous dissipation, i.e. the effects of a stochastic small scale fluctuation field which is 

usua,lly described in terms of a density-density correla~tion spectrum S,,,, For simplicity we 

treat, only the case of electrons a,nd simply charged ions, so t,hnt, N, cu’ E {e, i}: 

(““(!I, t)lL”‘(ll’,t’)) = ~jj$k,w. ~,~)cxp(il-(r-‘.‘)-‘“(2-t’))d3kdw. (1) 

We are especially interested in the case where the fluctuations are predominantly perpendic- 

ular to the direction of the current density j. This situation can a.rise xhen the underlying 

microphysical processes are highly anisotropic - like for instance in the earth’s magnetotail, 

where strong field aligned pla,sma beams a.re assumed to give rise to microinstabilities with 

wave vectors predominantly perpendicular to the drift velocity. (See reference 9, 10, 11 for 

a detailed discussion of this configuration). The anisotropy of the fluctuation field has the 

important consequence that the momentum exchange p .cesi) between the electrons and the ions 

along the current direction vanishes. This conclusion can easily be drawn from an expression 

given by Tange and Ichimaru:” 

pq” 1 ,,a,’ = -- 
47iEO 571.3 lJ 

4j7k - 
i ,F ad (I;, w) cl3 k dw. (‘4 

In magnetohydrodynamics, we can represent this effect by neglecting the resistivity 17 in 

Ohm’s law. Other dissipationa, effects, however, do not vanish, and therefore our considerations 

lead to the following version of nonideal ma,gnetohydrodynamics:13 

P-;it=-VPfWge+gi)+JxB (4) 

;($2 + ;p, + V.(i -’ P’- + ZP)!! + g, LLe + !C;i Ui + (1, + pi = j_ E (5) 

&+QXB= y(;;t;(v,e + VQ - $(V& + V.Zi)) + mi - mei x B (6) t Pe 

!E = -VxE 
at (7) 
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LX&j (9 PO 
v..B = 0. (9) 

This set of equations can be viewed at as a closed system for the tlyna~mical variables p, TV, p and 

B (denoting mass density, bulk velocity, scalar pressure and magrletic field, respectively). The 

current density j and the electric field E can be eliminated directly with the help of Ohm’s a.nd 

Ampere’s laws (&q. (6) zmd (8)); the dissipative quantit,ies q and z, i.e. the heat flus and the - 
nondiagonal part of the pressure tensor, can - a,t least in principle - be obtained as functions 

of the dynamical variables. (Explicit expressions, of cowse. would require the determination 

of the fluctuation spectrum S.) 

For the rest of this paper we restrict ourselves on translationally invarin~nt systems, i.e. on 

configurations which are independent of the z-a.xis of a suitable chosen coordinate system. 

This assumption, although it does not impose the most general symmetry we could consider, 

simplifies the following calculations considerably. The treatment of more general configurations 

is essentially analogous; for an extensive discussion of this point see reference 2. 

In order to derive definite statements on the stability properties of the considered plasma 

dynamics, we have to fix appropriate boundary conditions (any equilibrium can be destroyed 

by uncontrolled external influences). For simplicity, we assume the pla.sma to be confined in a 

finite cylinder volume V = F x [0, L] oriented parallel to the invariant direction, i.e. the z-axis 

of the coordinate system chosen above and demand 

i) Vanishing bulk velocity at the cylinder mantle M: 

VIM = 
mze + ‘n& 

m,+mi l&f= O 

ii) Fixed the drift velocity of the particles at the mantle: 

Pi--I&= i& IA4 = 1”s 

iii) Fixed (electron and ion) temperature F at the ma.ntle (T z p/nk): 

Til,= Tel&f= T 

(11) 

(1-4, 

iv) “Ideal-mirror” boundary conditions for the electromagnetic quantities (which can be 

achieved by assuming the cylinder mantle to have infinite electrical conductivity): 

(13) 

(14) 



Although the postulated boundary conditions clearly correspond to a highly idealized situa- 

tion, they seem to be reasonable in important physical situations. For instance, in the case of 

the earth’s magnetotail the mantle M may be represented b;\- the magnetopause.” 

It turns out to be appropriate for our purpose to express t,he ma,gnet,ic field B by the vector 

potentkl 4 via B = V x A and 0.2 = 0 (Coulomb gauge). This substitution replaces the 

induction equation (7) by 

43A 
-==-E+v 
at J 

G(T-, c’)V.&‘)d3 r’ F 
Here, G(c,r’) denotes the Green’s function for the two-dimensional Laplace operator on the 

cross-section F, i.e. the solution to the problem 

V2G(c,d) = 6(r- f), G(c,z’) = 0 for r’ E a3F. (16) 

An appropriate boundary condition for the vector potential A compa,tible n:it,h equation (15) 

can be easily derived from (13) and (14) as 

It is convenient for our following considerations to introduce a state space 2 as the set of 

all configurations accessible to the considered plasma under the restrictions of the imposed 

symmetry and boundary conditions. Taking into account that the total particle number N in 

the volume is conserved (which follows from (3) and (lo)), we can define 2 as 

Z={(n,t~,p,.4)/ $=O~~~n&=Nr\b oundary conditions (10 44) a,ud (17)). (IS) 

Note that Z indeed is a closed space in the sense, that if the plasma system belongs to it at a 

time to, it remains therein for all t > to. 

After formulating the necessary prerequisites, we can now proceed t,o derive the thermo- 

dynamic stability criterion. The basic idea is to utilize the second law of thermodynamics, 

according to which the net production rate of the entropy, i.e. the sum of the temporal cha,nge 

and the flus through the boundary, is a non-negative quantity. With respect to the volume V, 

the second law reads (k being Boltzmann’s constant and C a,n arbitrary normalization):14 

d 
ii” J Icnlnc$n-Qr + $/& +ui) .rrs2 2 0. 

Our ansatz is to use the inequality of the second law (19) to construct a candidate for a 

Lyapunov functional on the state space Z, i.e. a functional P’(z) with $ lF 5 0 for all z E Z, 

by transforming the remaining surface integral into a total time derivative as well. This can be 

done by using the balance equations of momentum, canonical momentum and energy, which we 

6 



obtain by integrating the equation of motion [4), the induct,ion law (15) combined wit,h Ohm’s 

law (G), and the energy equation (5) over the tot,al volume V. Note that we have used for (21) 

and (22) the translational invxiance of the configuration. and for (21) a,lso the assumption of 

vanishing resistivity: 

d 
z “2 

/ +m, + mi)ndr + / e, (zi + zre) .asl = 0 (20) av 
d 
z ge.(L-Lr)&2=0 

q= me=e (21) 

d 
z J 

(g, u, + gi vi + ‘1, + li) as2 = 0. (22) 
av 

We cm add these three equations to the second iaw such that all surface integrals cancel. 

(Actua,lly, the balance of momentum (20) is not needed due to the boundary condition (10); 

however, it would be necessary in order to treat the slightly more general case 21~ = CC, # 0.) 

The resulting equation defines a functional IF of the state space Z, called the (generalized) 

free energy 

~{%v,P,Al= s nv’ + $- Tkln(c$n.-+I - ;wen.4zd3r (‘3) 

which has the desired property, i.e. a definite sign of the total time derivative: 

-+L,P>11 5 0. (24) 

Because of its monotonical decrease in time, the generalized free energy IF already has one 

of the properties of a Lyapunov functional. The remaining property of positive definiteness 

therefore provides us with a sufficient stability criterion: A stationary configumtion za of the 

discussed plasma system is locally stable against translational invariant perturbations if the 

functional IF has a local minimum at this point. (Of course, the set of suitable test functions 

is given by the state space Z as defined in (1s); therefore, the particle number fixation has to 

be taken into account as a constraint.) 

As we have the fully non-linear form of the functional IF available, it may serve as a starting 

point for a non-linear stability analysis of the system, e.g., by the method of bifurcation 

analysis. First steps in that direction have already been taken; r5,r6 however, for the rest of 

this paper we restrict ourselves to the problem of local stability, expanding the free energy in 

a series according to 

IF{& + Sz} = lF + &IF + a@) IF + ” (25) 
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As usual, the condition of the first variation to vanish determines the structure of the equilibria. 

Taking pxticle conservation into account with the help of a La,grangian multiplier A, the Euler 

Lagrange equations for lF read 

-b7xA-+t,=0 
wo 

1me+mi 
2 2 

g2 - Tkln(Cpq)n-s + :lcT - $xA, + A = 0 

3 3nkT -__ - = 0. 
2 2p 

From these equation follows g = 0, p = n1iT and B, = 2 - &+x - aB - const.(:= 0 for simplicity); 

the rest of the information can be easily reduced to one remaining equation of Grad-Shafranov 

type for the z-component of the vector potential 4 = rle, 

(30) 

where the scalx pressure p is given in terms of A via the following expression: 

p(A) = NkT 
exp( $qq 

f, exp( w)d%’ 

Note that p does not only depend on the local value of A but also on an integral over the whole 

volume (insuring invariance against the remaining gauge transformation A -+ A + const.). 

However, the partial derivative in (30) is meant to affect only the local dependence, i.e.: 

ap lu,eN -= 
exp( *, 

a.4 2 J,esp(e)@r 
(32) 

As is well-known, the equilibria given by (30) and (31) are by no means trivial. In particukar, 

they cover a wide class of weakly two-dimensional solutions describing stretched configurations 

such as the earth’s magnetotail.‘7~‘8~1g 

To give a stability criterion for the equilibria defined by (30) and (31), we proceed considering 

the next order of the free energy, i.e. the second variation 6’ JF. It has the form 

J(2) IF{&& 6n,6g, Sp} = 
I 

+M4)2d3r + gn, + v+g)' 
” 21-50 

(33) 

+ ;p($)2 - $;$ + ;p(;)2 - +,&6A,d’~. 
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The equilibria discussed above are linear stable if this functional is positive definite under the 

constraint of constant particle number, i.e. under 

J 6n cl"r = 0. (34) 
V 

It is obvious that minimizing perturbations have 62 = 0, 6p = kT6n and 6B, = VXX&.~, = 0. 

Minimizing for 5n under the constraint (34) gives: 

6n = ;$n (6A, - ; J dA,&) 
v 

Inserting these results into expression (33) and usin g the form of pressure function (31), we 

can finally formulate the thermodynamic stability criterion in terms of a variatioual principle 

for the perturbation of the vector potential 6A,: 

An equilibrium given by (30) and (,31) is stable against sufficiently small translationally 

invariant perturbations in the frame of nonresistive MHD, if the following functional is positive 

for all nonvanishing test functions 6A,(z, y) with SA,(rJ = 0 for c E W: 

SIF(6Az) = J +&Q' - ?&6A,)Zd3r + ,(J~v6;;3;r'2. 
” 2PO 

(36) 

This is exactly the stability criterion which has already been formuked by ref. 1 and 2 for 

multi-fluid case (specialized on the case of two particle species and assumed quasi-neutrality). 
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III. Comparison to Bernsteins Energy Principle 

We now proceed with the second part of our program, the comparison of the thermodynamic 

stability criterion to Bernstein’s energy principle for ideal magnetohJ-drodyna~nlics. For that 

purpose, WP first sketch the derivation of Bernstein’s principle and bring it into a form which 

is appropriate for our argumentation; i.e., we formulate it like the thermodynamic criterion in 

terms of a variational principle for the z-component of the vector potential. 

The starting point for the derivation of Bernstein’s energy principle is given by the equations 

of ideal MHD, which can be obkined from the nonideal description (eq. 3 9) by neglecting 

all dissipative effects in the equation of motion, the energy balance and in Ohm’s k&5: 

aP 
T$+v,Pv=o 

p+p+;(vxB)xB 

cl 
zpp 

-7 = 0 

dB 
= = Vx(gx g. 
at 

(37) 

(38) 

(39) 

(40) 

The adiabatic index y in equation can be adjusted to cover two different assumptions on the 

heat flux p resp. the temperature gradient VT: the choice y = 5/3 corresponds to the adiabatic 

case 4 = 0, -, = 1 represents the isothermal ca.se VT = 0. Formally, “polytropic” behavior 

(values of y between 1 and 5/3). is also allowed. 

We think of the ideal plasma to be confined in the same cylinder volume as the nonideal 

plasma we have treated in the previous chapter. This assumption corresponds to the following 

set of boundary conditions: 

i) Vanishing bulk velocity a,t the cylinder mantle M: 

t&,f = 0. 

ii) “Ideal-mirror” boundary conditions for the electromagnetic quantities: 

(41) 

As it is well known (e.g. ref. 20), static (g = 0) and translationally invariant (& = 0) 

equilibria of the ideal MHD equations can be obtained by choosing an arbitrary pressure 

function p = p(A), i.e. by specifying the pressure as a function of the z-component of the vector 

potential 4 = AC,. This ansatz reduces the system (37 40) to a single partial differential 
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equation for -4. the Grad-Sha,franov equation, the same which a,lready has appeared in the 

previous section: 

However, in contrast with the nonresistive case, the ideal MHD equations give no information 

on the form of the pressure function p(A). In order to compare both theories, we will later 

specialize P(A) to form (31) also in the nonideal case, but for the moment let us only assume 

that the pressure function is positive and invertible, i.e. that P(A) 2 0 for all A and that from 

p(Al) = p(A2) follows Ai = AZ. 

Linearizing the ideal MHD equations around an equilibrium given by (43) and introducing 

the Lagrangian coordinate 5 = si gdt (the infinitesimal displacement of a fluid element), one 

obta,ins the equation of motion for an infiniksima.1 perturbation: 

By multiplying by 2, integrating by parts and using that F is Hermitian, one derives a 

conservation law for the energy of the perturbation in the form: 

d 
z J ” ; pi2 - ;$. FJd% E J ipj” d3r + 5’W = 0. 

v2 - (45) 

This equation leads directly to Bernstein’s energy principle? a MHD-equilibrium is stable 

against small perturbations < = [(z, y, z), when ~the following functional is positive definite: - - 

pw = -1 2 “~m’vP+-rPw) J 
+;(vxB)xVx(<x~)+;Vx(Vx(<x~))xB)d3r. (46) 

As in the previous chapter, we now concentrate on the case of translationally invariant 

perturbations (2 = 0). This assumptions simplifies the expression for 6sW to: 

Pw = J .+V($. VA)) + +-JVx([;VA))’ + &Vi)’ - ;$(<. VA)*d3r. 
” Go 

(47) 

Evidently, minimizing perturbations have no EL component, so that the variational principle 

can be evaluated with the following form of 6W, subject to variations < = (&, E,): 

Pw = J ‘p($. VA))’ + $(V.<)’ - ;g($. VA)2d3r. 
” Go 

To compare Bernsteins principle to the thermodynamic stability criterion, we have to reduce 

this functional further so that it can be formulated in terms of the z-component of the vector 
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potential, 6A,: we observe that in all terms except the second one the displacement [ only - 
occurs in the form [ VA. An inspection of the ideal MHD equations shows that this quantity 

can be identified with -&A,: 

6. VA = -6A,. (49) 

Therefore, we try to minimize t,he functiona, (,or equivalently the term 7 s,,(V. [)‘d3r) with 

respect to the component orthogonal to the gradient of il. We make the following ansatz, 

where $ is a,n abbreviation for -5.4z/(VA)2: 

f = ,+VA + xVA x ez. (50) 

It is easy to see that this v-ariational problem has a solution: the Euler-Lagrange equations 

with respect to the orthogonal component s are 

V(ypV($VA+ xVA x e,)) x V.4 = 0. (51) 

As the equilibrium pressure is a function of A, i.e. p = p(A), it follows that 

VV($VA + xVA x e,)) x VA = 0, (52) 

which shows that the term subject to the gradient is a function F(A) of the vector potential: 

V($VA + xVA x e,) = F(A). (53) 

Our next step is to determine the function F in terms of $ (or, equivalently, in terms of 

SA,). We can write the last equation in form of a partial differential equation for x: 

V(xVA x C) s 2% - $g = F(A) - V($VA). (54) 

A necessary and sufficient condition (Fredholm conditionsi) for this linear equation to have a 

solution is that the right-hand-side has to be orthogonal to the kernel of the operator on the 

left hand side, which is given by the set of all functions g of the potential A: 

J g(A) (F(p) - V($VA))d3r = 0 for all g = g(A) V (55) 

This condition determines F(A) uniquely: 

F(A) = s,, 6(A - A’)V’($(~‘)V’A’)d3r’ 

s,, 6(A - A’)d3r’ 

Using our assumption that the pressure p is given by an invertible function of the vector 

potential A, we can equivalently write: 

F(p) = .f,r J(P - p’)V’(W)V’A’)d3~’ 

j-,t J(p - p’)d3+ 
(57) 
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or, after pxtial integration and re-inserting of li, = - &: 

F(p) = - 
5 J,, 6(p - p’)6A;(r’)d3.’ 

J,, 6(p - p’)dW 

With this expression for F, the partial differential equation (54) obeys the Fredholm condition 

and is therefore solvable. However, we do not have to construct a solution explicitly as we ccan 

obtain the necessary information in a different way: the function F is just another expression 

for the divergence of I, evaluated for the (unconstructed) minimizing s: 

0.t =V.($VA + xVA x ez,) = F. (59) 

Substituting this result into the functional of equation (45), we can fina,lly state the following 

form of Bernstein’s principle: 

A translational inva.riant equilibrium of the ideal MHD equations is stable against symmetry 

preserving perturbations, when the following functional is positive definite: 

& J,, J(P - P’I&W~~‘)~~~~~ j-,, 6(p - P'P-' (60) 

From now on we restrict our discussion on those configurations which are equilibria of both 

ideal and nonideal MHD, i.e. on solutions of the Grad-Shafranov equation (30 resp. 43) with 

the choice (31) of the pressure function. Comparing the functional S2W to the second variation 

of the free energy 6’lF which appears in the thermodynamic stability criterion (eq. 36), we 

see that the first terms of both functional are identical. However, there is a difference in the 

third term. which can be written 

c~‘W{~A,}-~~IF{C~A,} = J %P( 
v-2 

& J,, 6(p - p’)@A:@r )2d3 

.I-,, &(P - p’)d3+ 

_ 1 (J, $A&)*, (61) 
’ 2 &pd%- 

By introducing the following functions of the pressure p (which runs from 0 to co) 

a(P) = ,,/G ;($ J,, 6(p --p’)6Azd3+ (62) 

b(p) = 
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we ca,n formulate the difference between 6’W and 6’F in a clearer form: 

S2W{6Az} - 6’IF{6Az) = $ 
r 

1 c.rom d~lP)’ a’dp - - 
2 J,” pc1p (64) 

0 

= ;(y - l)/-rr’dp+ ;fc?dp- 
0 0 

The first term of the last expression is positive because the adiabatic index y is always greater 

or equal than unity; the second term is positive as well due to Schwarz’s inequality: 

~w&fD2& L (~mw%)2. (65) 

Therefore, for any given perturbation 6A,, the functional 6’IY of Bernstein’s energy principle 

always exceeds the functional 6’IF of the thermodyna,rnic criterion. Hence, we can state: 

For any given equilibrium of both the ideal MHD and the nonresistive MHD equations, 

i.e. for any solution of (30) and (31), stability according to the thermodynamic criterion also 

implies stability according to Bernstein’s principle. However, stability xcording to the latter 

does not imply stability according to the former. 

Physically, the increased stability in ideal MHD can be explained by the adiabatic behavior 

of the plasma (if present, i.e. if y = 5/3), a,nd by the “frozen-in” field line effect. This fact is 

obvious for the first term in equation (64), which vanishes only in the isothermal case 7 = 1. 

To see it for the the second term, let us go back to the formula (33) of the second chapter 

from which we can obtain the free energy S2 1F as a function of the perturbations of the vector 

potential and the particle density: 

61F{6Az,6n} = J +6AJ2 + ;p(;)’ - ;we6n6ilz d3r. 
” %I 

From this expression we received the final form of 6’ lF{SA,} by minimizing with respect to 6n 

under the constraint of fixed particle number s, 6n d3r = 0 (th e constraint of the nonresistive 

model). However, if we had used the constraint of ideal MHD, we would have to write: 

& = -V.(n() = -< . VA; - nV.c = $A, - no.(- 6Az -VA + xVA x e,), 
(VA)’ 

(67) 

where we were only free to vary x, the component of < perpendicular to VA. Inserting this 

expression into (66) gives rise to exactly the same variational problem we discussed above (eq. 

49 - 59), and we can read off the minimizing 6n under ideal MHD constraints: 

Sn*{6A,} = $A, - nF. 
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Clearly, the test functions of form (67) obey s, 6&“r = 0, which means they are a subset of 

those allowed in the variation under the nonresistive constraints. R.estricting the ckxss of test 

functions of a variational problem always raises the minimum; hence we can conclude: 

621F{6A,} s 62E’{6AZ,6n{6A,)} 5 621F{S.4,,6n*{6A,}}. 

As a matter of a fact, we have 

(69) 

6’~{6Az,6~*{6A,}} = L $(VC.A,)’ - :$(6~~) + F’ d3r z 6’~{6~,) (70) 

(for the case y = 1). This result closes the chain of our arguments and shows that it is indeed 

the constraint of frozen-in field lines that raises the functional SW{6A,} over 61F’{6Az} and 

hence increases the stability properties of ideal MHD. 
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IV. Discussion 

Our investigations have shown that it is possible to rederive the statistical mechanics sta- 

bility criterion for current carrying plasmas within the framework of a one-fluid description, 

employing a nonideal magnetol~ydrodynamic theory which takes into account ~~11 kinds of dis- 

sipational effects except the resistivity, and that this criterion has a definite relation to the 

ideal MHD energy principle by Bernstein et al. In this chapter we summarize our results and 

discuss their physical interpretation. 

Starting point of our considerations was the formulation of the so-called nonresistive mag- 

netohydrodynamics, a plasma model which neglects the influence of the resistivity in Ohm’s 

law but allows for other dissipational effects like viscosity and diffusion. We argued that this 

description is valid in the presence of microscopic field fluctuations with a spectrum dominant 

in directions perpendicular to the current density, a situation given e.g. in the tail of the 

earth’s magnetosphere. 

In the first part of our work (section II) we used this plasma model, specialized to the case of 

translational invariant modes and provided with appropriate boundary conditions, to rederive 

the statistical mechanics stability criterion for current carrying plasmas which so far had only 

been obtained for a multi-species plasma description. (Actually, the form we found corresponds 

to the quasi-neutral two-fluid case discussed by Kiesslingz2). As the MHD equations can be 

derived from the multi-particle description by invoking additional assumptions, our results 

basically state that these assumptions are compatible with the validity of the thermodynamic 

stability analysis. Clearly, this is a conclusion which is essential for estimating the validity 

domain of the thermodynamic approach. 

The second part of this paper (section III) was devoted to comparing the rederived ther- 

modynamic stability criterion with the energy principle by Bernstein et a,l. which is based on 

the more restrictive plasma description of ideal magnetohydrodynamics. After sketching the 

assumptions invoked in Bernstein’s principle and choosing appropriate boundary conditions, 

we specialized it likewise to the case of translationally invariant motion and reduced it to a 

form directly comparable to the thermodynamic criterion, i.e. to a variational principle in 

the z-component of the vector potential perturbation only. Applying Schwarz’s inequality, we 

finally arrived at the desired relation 62W{6A,} 2 621F{6A,}, showing that for any given SA, 

the functional of Bensteins principle is always larger than the corresponding functional of the 

entropy principle, and hence the latter is always more “pessimistic” than the former: stabil- 

ity according to the thermodynamic criterion also implies stability according to Bernsteins’s 

principle, but not vice versa. 
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.4 physical explanation for this definite relation can be drawn from the fact that the plasma 

motion in the nonideal model has much more degrees of freedom than it has in ideal MHD. In 

fact, as the form of the dissipative terms is not totally specified, all dynamical modes in the 

nonideal model are allowed as long they are compatible with the balance equations of particle 

number, momentum and energy and with the second law of thermodynamics, whereas the ideal 

MHD motions are severely restricted by the “frozen-in field line” effect and by the requirement 

of adiabatic behavior. 

As a consequence, for any given equilibrium, the set of perturbations allowed in ideal magne- 

tohydrodynamics is is considerably smaller than the one allowed in the model of nonresistive 

MHD. More strictly spoken, the former is always a true subset of the latter; and correspond- 

ingly, the class of test functions for Bernstein’s energy principle is also a true subset of those 

employed in the statistical mechanics version. /Note that this connection was not a-priori clear 

in the multi-species formulation of the thermodynamic stability criterion; therefore, the first 

part of our work was necessary for our conclusions.) From the point of view we have reached 

now, it becomes obvious that we had to arrive at our conclusion 6slF{6A,} 5 62W{6A,}. The 

minimization process in a larger space of test functions necessarily leads to a lower minimum, 

and we have indeed explicitly shown.that one can obtain Bernstein’s principle by imposing 

additional constraints on the variation if 62 1F. 

As a closing remark, let us emphasize that there is an important difference in the interpre- 

tation of the results of both criteria in the case of instability. Whereas in the ideal MHD case 

the growth rate of the instable mode can directly be inferred from Bernstein’s energy principle 

(resp. from the solution of the associated eigenvalue problem), no such analysis is possible in 

the nonresistive model: 62 lF 5 0 only indicates that free energy is available; the way in which 

the system takes advantage of this free energy is not determined (<as long as the dissipation 

process remains unspecified). Therefore the situation may arise that the system is thermo- 

dynamically unstable but, due to the possibly long time constants of the unstable mode, still 

appears as stable. This, however, is a feature of all thermodynamic stability theories. Further 

investigations, leading to an estimation of the time scales of the instability, can only be carried 

through if the dissipation processes are specified in a more detailed way. 

This work was supported in part by the DOE (at Chicago and Fermilab), the NASA (at 

Fermilab) and by the German National Scholarship Foundation through a scholarship. 
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